
The MDF C/C++ API
Technical Description and Reference Guide

15 May 2024

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

Installation
The MDF API can be downloaded from : https: // packages .millistream.com Binaries are available for
Windows, Linux and macOS. Full source code is also available for download for those willing to compile with their
own compiler or to support operating systems for which there is no pre-built binaries, the source can be found at
https://packages.millistream.com/source/

On Unix/Linux, the source can be compiled with the standard, “./configure && make && [sudo] make install”. For
Windows we currently only support building with MSYS2.

To build on macOS, Homebrew have to be installed and the packages "pkg-config", "zstd" and "openssl" have to be
installed via brew.

MDF links against zlib (http://zlib. net), zstd (https://github.com/facebook/zstd) and OpenSSL (http s ://openssl.org/). Pre-
built binaries of both is available in the Windows binary zip archive, but not for the Linux variants since they should be
available through your distribution repository.

Example programs using libmdf can be downloaded from https://packages.millistream.com/source/mdf_examples.zip

Includes
API function declarations are collected in the mdf.h include file. Definitions for messages, tags etc are collected in the
mdf_fields.h include file.

Definition prefixes

Prefix Description

MDF_M_ Message References

MDF_MC_ Message Classes

MDF_RC_ Request Classes

MDF_RT_ Request Types

MDF_F_ Fields / Tags

MDF_CA_ Corporate Action Types

MDF_DLY_ Message Delay

MDF_TC_ Trade Codes

MDF_OPT_ API Properties

MDF_MSG_OPT_ Message Properties

MDF_ERR_ API Errors

MDF_STATUS_ API Status Callback Status Codes

So for example, the Quote message is defined as MDF_M_QUOTE and the Bid Price field is defined as
MDF_F_BIDPRICE. A detailed description of the available messages are documented in the MDF Messages Reference
document, and the fields are documented in the MDF Fields Reference document.

Linking
Applications should link with libmdf.so on Unix/Linux (-lmdf), or libmdf-0.dll on Windows (use
libmdf.lib as the import library for Microsoft Visual C or libmdf.dll.a for MinGW).

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

ftp://millistream.com/
https://packages.millistream.com/source/mdf_examples.zip
http://openssl.org/
http://openssl.org/
http://openssl.org/
https://github.com/facebook/zstd
http://zlib.org/
https://brew.sh/
https://packages.millistream.com/source/
ftp://millistream.com/
ftp://millistream.com/
ftp://millistream.com/

The API Handle
Each connection to the Millistream system is managed by the API handle, this handle is represented by the opaque
pointer mdf_t.

Handles are created with mdf_create() and destroyed with mdf_destroy(). Handles are not thread-safe, so if
multiple threads will share access to a single handle, the accesses has to be serialized using a mutex or other forms of
locking mechanisms. The API as such is thread-safe so multiple threads can have local handles without the need for
locks.

Connecting to the Millistream System
A API handle can be connected to the Millistream System with mdf_connect(). A comma separated list of servers
can be supplied and the API will try each server in turn until it find one that answers.

After the connect has succeeded, the client must login with the MDF_M_LOGON message before the server grants
access to the system. How to send messages to the Millistream system is described in a later section, so we have
supplied a small example of how to connect and send the login message. Please note that this example lacks all form of
error handling. It will connect to the server “sth2.millistream.com” at tcp port '9000'.

mdf_t mdf;

mdf_message_t msg;

mdf = mdf_create();

mdf_connect(mdf, “sth2.millistream.com:9000”);

msg = mdf_message_create();

mdf_message_add(msg, 0, MDF_M_LOGON);

mdf_message_add_string(msg, MDF_F_USERNAME, “testuser”);

mdf_message_add_string(msg, MDF_F_PASSWORD, “t0ps3cr1t”);

mdf_message_send(mdf, msg);

mdf_message_destroy(msg);

...

mdf_destroy(mdf);

The connection can be disconnected with mdf_disconnect(), any current connection will also automatically be
disconnected when the handle is destroyed.

It is possible to register a status callback, which will be called by the API during the various stages of the connect
procedure (and when/if the connection is disconnected). See the section of properties for how to register such a callback
function.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

Receiving Data
Once the connection is up, the client must consume data sent from the server with mdf_consume(). The consume
function will return when there is messages to decode, if the connection has been disconnected or when the connection
has been idle for the number of seconds supplied by the client (which can be immediately if the client supplied '0' as
timeout).

Clients wanting to use their own I/O event notification system can fetch the connection socket / file descriptor via the
properties, and call the consume function with '0' as timeout when it notices that there is data to be consumed. Clients
doing this should make sure to periodically call the consume function even if there is no incoming data so that the API
can send heartbeat requests to the server, so a stale connection can be detected properly (the MDF_OPT_TIMEOUT
property can be fetched to know how long to wait before having to call the consume function).

If the consume function returns true, the client must decode the received messages with
mdf_get_next_message2(), it is also possible to register a data callback function that will be called by the
consume function when there is messages to decode (the consume function will no longer return true if a data callback
function is registered).

When mdf_get_next_message2() returns true, the individual fields of the message can be retrieved by repeating
calls to mdf_get_next_field() until it returns false. Since messages can be empty (for example if all the fields
are null on a reply to an IMAGE request) there is no guarantee that mdf_get_next_field() will return true after a
mdf_get_next_message().

Requesting Data
The Millistream Data Feed is a request based feed, so upon a successful login, there will be no messages sent by the
server unless the client requests them (there are a few exceptions such as heartbeats). Requests can be of two types;
stream or image.

Stream requests (MDF_RT_STREAM) are realtime streaming data, I.e when an event happens at a market place, the
event is immediately sent to the client by the server in realtime. The first message for an instrument after a stream
request is with only the fields that where changed due to the event.

Image requests (MDF_RT_IMAGE) are requests for the current image of the instruments. There will only be a single
reply for each instrument in an image request and it will be a complete message will all the fields that currently contain
a value (null values will be sent if they have been deliberately set to null by a stream event). If MDF_F_DATE and/or
MDF_F_TIME is present in the request, only the fields that have been updated since the time+date specified are sent.

Usually, clients will issue combined requests (I.e stream+image) since they want to know the current image of the
instruments and also subscribe to the realtime changes to this image. This is known as a full request (MDF_RT_FULL).

Currently the request functionality of the Millistream system is somewhat limited (for example there is no possibility to
request trades or news messages sent previous to the request, and there is not possibility to request only instruments of a
specific type or belonging to a specific market or list).

The filtering possibility in the current version of the system is to request all available instruments or to supply a space
separated list of the instruments to subscribe to. For example a client application could request Basic Data for all
instruments and then issue requests based upon the received Basic Data, this works quite well since Basic Data is a low
messages per second stream.

Issuing requests is done be sending messages to the Millistream system and since it is described separately in a later
section we have created a small example on how to issue requests for both Basic Data and Quotes, the request is a full
request and for all available instruments.

mdf_message_t msg = mdf_message_create();

mdf_message_add(msg, 0, MDF_M_REQUEST);

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_list(msg, MDF_F_REQUESTCLASS, MDF_RC_BASICDATA “ “
MDF_RC_QUOTE);

mdf_message_add_numeric(msg, MDF_F_REQUESTTYPE, MDF_RT_FULL);

mdf_message_add_string(msg, MDF_F_INSREFLIST, "*");

mdf_message_send(mdf, msg);

If the client adds a MDF_F_REQUESTID field to a request, a MDF_M_REQUESFINISHED message will be sent when
the image request has been completed in full (and the corresponding request id will also be returned with that message).

When issuing full requests, each instrument will be opened in turn, I.e first the image will be sent and then the stream
subscription will be enabled on that instrument. So the first message for every instrument in a full request will always
be a complete message, and each “opened” instrument will begin to send it's realtime stream as soon as possible
meaning that the client will not have to wait for the whole image part to complete before receiving realtime data.

Trades and news does currently not contain image data, so full requests for these messages will be handled like stream
requests only.

By adding MDF_F_DATE and MDF_F_TIME to an image or full request, the server will only send data that has been
updated since that date+time. This can be useful for example on reconnect where a client do not want to perform a
complete download of all the messages and fields in order to limit the data needed to be received and processed.

When the client no longer want to subscribe to realtime data it can issue a MDF_M_UNSUBSCRIBE message to
unsubscribe to specified messages and instruments. It's possible to unsubscribe to a subset of the instruments and
messages that the client is subscribing to, i.e the list of instruments and messages to the unsubscribe request does not
have to fully match a previous request message.

The MDF_F_INSREFLIST field should contain a space separated list of the insrefs that you want to request to or
unsubcribe from. If the field instead contains the character "*" the request or unsubscribe is for all instruments that the
account is entitled to.

The MDF_F_REQUESTCLASS field should contain a space separated list of the Request Classes that you want to
request to or unsubcribe from. If the field instead contains the character "*" the request or unsubscribe is for all Request
Classes that the account is entitled to.

Properties
It is possible to modify and fetch properties with mdf_set_property() and mdf_get_property().

Property Type Description

MDF_OPT_FD int The file descriptor used by the
connection. Will be -1 (or
INVALID_SOCKET on Windows) if
there is no connection.

MDF_OPT_ERROR MDF_ERROR The current API error code

MDF_OPT_RCV_BYTES uint64_t The number of bytes received by the
server since the handle was created

MDF_OPT_SENT_BYTES uint64_t The number of bytes sent by the client
since the handle was created

MDF_OPT_DATA_CALLBACK_FUNCTION mdf_data_callback This callback function will be called by
the consume function if there is any
messages to decode

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

MDF_OPT_DATA_CALLBACK_USERDATA void* Custom userdata that will be available to
the data callback function

MDF_OPT_STATUS_CALLBACK_FUNCTION mdf_status_callback This callback function will be called
whenever there is a change of the status of
the connection

MDF_OPT_STATUS_CALLBACK_USERDATA void* Custom userdata that will be available to
the status callback function

MDF_OPT_CONNECT_TIMEOUT int The number of seconds before
determining that a connect attempt has
timed out. Valid values are '1' to '60'. The
default is '5'.

MDF_OPT_HEARTBEAT_INTERVAL int The number of seconds the connection
must be idle before the API sends a
heartbeat request to the server. Valid
values are '1' to '86400'. The default is
'30'.

MDF_OPT_HEARTBEAT_MAX_MISSED How many outstanding hearbeat requests
to allow before the connection is
determined to be disconnected. Valid
values are '1' to '100'. The default is '2'.

MDF_OPT_TCP_NODELAY int '1' will disable the Nagle algorithm, '0'
will enable it. The default is '0'.

MDF_OPT_NO_ENCRYPTION int '1' will disable encryption of the traffic
from the client to the server (traffic from
the server to the client is unaffected by
this setting), must be set prior to calling
mdf_connect(). The default it '0'.

MDF_OPT_TIME_DIFFERENCE int The time difference in number of seconds
between the client and the server. The
value should be added to the current time
on the client in order to get the server
time. Please not that this value can be
negative if the client clock is ahead of the
server clock. Updated when the client is
receiving either a Heartbeat Response or a
Heartbeat Request from the server.

MDF_OPT_TIME_DIFFERENCE_NS int64_t As MDF_OPT_TIME_DIFFERENCE but
the difference is in number of nano
seconds.

MDF_OPT_BIND_ADDRESS char * A numerical address to which the API will
bind before attempting to connect to a
server in mdf_connect(). If the bind fails
then mdf_connect() also fails. The string
is copied by the API and a NULL value
can be used in order to ‘unset’ the bind
address.

MDF_OPT_CRYPT_DIGESTS char * A comma separated list of the message
digests that the client will offer to the
server upon connect. The value is copied
by the API and a NULL value can be used
to set the list back to default.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

The caller must make a copy of the
returned value if (s)he want’s to keep it.

MDF_OPT_CRYPT_CIPHERS char * A comma separated list of the encryption
ciphers that the client will offer to the
server upon connect. The value is copied
by the API and a NULL value can be used
to set the list back to default.

The caller must make a copy of the
returned value if (s)he want’s to keep it.

MDF_OPT_CRYPT_DIGEST char * Returns the digest chosen by the server,
only available after mdf_connect()
returns.

MDF_OPT_CRYPT_CIPHER char * Returns the cipher chosen by the server,
only available after mdf_connect()
returns.

MDF_OPT_TIMEOUT int Returns the number of seconds to wait
before having to call mdf_consume().

MDF_OPT_HANDLE_DELAY int '1' will enable delay-mode in where the
server adds the intended delay to each
message sent. This also enables the client
to set the intended delay of the messages
the client sends to the server. Must be set
prior to calling mdf_connect(). The
default it '0'.

MDF_OPT_RBUF_SIZE size_t Returns the number of bytes waiting to be
processed in the internal read buffer after
a call to mdf_consume().

MDF_OPT_RBUF_MAXSIZE size_t Returns or sets the size of the internal
read buffer.

Example:

/* this is our custom data callback function */

void our_callback (void *udata, mdf_t handle)

{

uint16_t mref;

uint64_t insref;

while (mdf_get_next_message2(handle, &mref, &insref)) {

uint32_t tag;

char *value;

while (mdf_get_next_field(handle, &tag, &value)) {

...

}

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

}

}

/* register a data callback and custom userdata */

struct our_userdata *udata = xxx;

mdf_set_property(mdf, MDF_OPT_DATA_CALLBACK_FUNCTION, our_callback);

mdf_set_property(mdf, MDF_OPT_DATA_CALLBACK_USERDATA, our_userdata);

/* fetching the received number of bytes, and setting it to zero */

uint64_t val;
mdf_get_property(mdf, MDF_OPT_RCV_BYTES, &val);

val = 0;
mdf_set_property(mdf, MDF_OPT_RCV_BYTES, &val);

Message Properties
It is possible to set message properties with mdf_message_set_property().

Property Description

MDF_MSG_OPT_UTF8 Enables (1) or Disables (0) UTF8 validation of the
strings given to mdf_message_add_string() and
mdf_message_add_string2(). The default value is
Enabled(1).

MDF_MSG_OPT_COMPRESSION Sets the zlib compression level for
mdf_message_add_string() and
mdf_message_add_string2(). Value must be between
Z_NO_COMPRESSION(0) and
Z_BEST_COMPRESSION(9). The default value is
Z_BEST_SPEED(1) since v1.0.21 and
Z_BEST_COMPRESSION(9) on older versions.

MDF_MSG_OPT_DELAY Sets the intended delay for the current and/or future
messages. The setting will remain until changed (a
call to mdf_message_reset() will not reset the setting
back to the default). The default value is
MDF_DLY_REALTIME (Realtime) for sending
data and MDF_DLY_BEST for requests.

Sending Data to the System
Besides simple requests and logins, clients can also contribute data to the Millistream system. This data can then be
requested by other clients (if they have the proper permissions). The ability to send data into the system is governed by
permissions dictating whether the client is allowed to send any data at all, which data to send, for which instruments and
if the client can create new instruments (and how many if so).

Messages to send is handled by the mdf_message_t handle, which is created with mdf_message_create() and
destroyed with mdf_message_destroy(). The message handle can carry multiple messages, and a new message is

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

added to the handle with mdf_message_add().

Once a message has been added to the message handle, fields can be added with the following functions:

mdf_message_add_numeric()

mdf_message_add_int(), mdf_message_add_uint()

mdf_message_add_string(), mdf_message_add_string2()

mdf_message_add_date(), mdf_message_add_date2()

mdf_message_add_time(), mdf_message_add_time2(), mdf_message_add_time3()

mdf_message_add_list()

Most functions takes the field value as a UTF-8 string, the reason for the _numeric(), _string() etc is to let the API know
what type of data you are adding so it can improve the compression; numeric values can experience a very high rate of
compression minimizing the bandwidth needed.

The active messages in a handle can be sent to the server with mdf_message_send(), and the message handle can
be reused with mdf_message_reset(). If reused, the handle keeps the memory currently allocated in order to
increase the performance due to far less calls to malloc() and free().

The current message in the handle can be removed from the handle with mdf_message_del(), repeated calls of this
function until it returns false is equal to mdf_message_reset().

The number of active messages can be fetched with mdf_message_get_num_active() and the total number of
messages in the handle (both active and reused) can be fetched with mdf_message_get_num().

Fetching the number of active messages can be used to know when to call mdf_message_send() after processing
some files are wherever the client will get their data to send, if there can be situations where the indata won't necessarily
produce messages to send. And fetching the total number of messages can be used to know when it is time to destroy
the message handle in order to release some memory if the number goes over a set limit.

As of v1.0.29 multiple threads can call mdf_message_send() simultaneously without locks to the same mdf handle
as long as they use thread specific message handles.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_create()

SYNOPSIS

mdf_t mdf_create();

DESCRIPTION

Creates a new API handle, this should normally by the first function to call in your application. The handle is
not thread-safe, but different threads can different handles simultaneously as long as they don't access the same
handle.

On Unix systems, SIGPIPE will be disabled and will not be restored when the handle is destroyed. So if your
application depends upon this signal, you will have to reset the signal after the call to this function. Note that as
of v1.0.26 this only happens on systems without MSG_NOSIGNAL or SO_NOSIGPIPE which AFAIK only
leaves Solaris.

RETURN VALUE

On success, a newly created API handle is returned. On error, NULL is returned.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_destroy()

SYNOPSIS

void mdf_destroy(mdf_t handle);

DESCRIPTION

Destroys the API handle, any open connection will be automatically closed. All memory allocated by the
handle will be freed.

RETURN VALUE

None

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_consume()

SYNOPSIS

int mdf_consume(handle, int timeout);

DESCRIPTION

Consumes data sent from the server. If there currently is no data the function waits for maximum timeout
number of seconds for new data to arrive from the server. If timeout is zero (0) the function will return
immediately if there is no data from the server. If timeout is negative then the wait period is treated as number
of microseconds instead of number of seconds (i.e -1000 will wait a maximum of 1000µs).

RETURN VALUE

Returns 1 if data has been consumed that needs to be handled by mdf_get_next_message() and no callback
function has been registered. The function returns 0 on timeout or if a callback function is registered and there
was data. On errors, -1 will be returned (and the connection will be dropped).

ERRORS

MDF_ERR_NOT_CONNECTED There is not connection with a server.

MDF_ERR_DISCONNECTED We where disconnected.

MDF_ERR_CONNECTION_IDLE There has been no timely reply to any of our heartbeats so the connection
has been disconnected.

MDF_ERR_MSG_OOB The received message contained lengths that would overflow the message

MDF_ERR_NO_MEM There was not sufficient available memory to fulfill a call to realloc() when
resizing the consume buffer to accommodate for the incoming message.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_get_next_message2()

SYNOPSIS

int mdf_get_next_message2(handle, uint16_t *mref, uint64_t *insref);

DESCRIPTION

Fetches a message from the current consumed data if one is present and fills the parameters with values
representing the message fetched.

The message reference will be returned in mref, this is the value to match with the MDF_M_ defines.

insref is the instrument reference, and is the unique id of the instrument within the Millistream universe. A
instrument should never change instrument reference, and instrument references will never be reused. There
are a limited number of messages in where insref will not be used to carry the instrument reference, please
consult the MDF Messages Reference document for more information.

RETURN VALUE

Returns true (1) if a message was returned (and the mref and insref fields will be filled) or

false (0) if there are no more messages in the current consumed data (or an error occured).

ERRORS

MDF_ERR_NO_ERROR No errors occurred when decoding the message

MDF_ERR_MSG_OOB The received message contained lengths that would overflow the message

MDF_ERR_AUTHFAIL The authentication of the message failed due to either communications errors or an
injection attempt. The connection with the server has been dropped.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_get_next_message()

SYNOPSIS

int mdf_get_next_message(handle, int *mref, int *mclass,

 uint64_t *insref);

DESCRIPTION

Fetches a message from the current consumed data if one is present and fills the parameters with values
representing the message fetched.

The message reference will be returned in mref, this is the value to match with the MDF_M_ defines.

The message class is returned in mclass, which will match the MDF_MC_ defines. The message class is
normally only used internally by Millistream and is supplied to the client for completeness and transparency,
the client should under most circumstances only use the message reference in order to determine which
message it has received.

insref is the instrument reference, and is the unique id of the instrument within the Millistream universe. A
instrument should never change instrument reference, and instrument references will never be reused. There
are a limited number of messages in where insref will not be used to carry the instrument reference, please
consult the MDF Messages Reference document for more information.

New clients should use mdf_get_next_message2() instead, this function is now only a wrapper around that
function anyway, the reason for this is that the values used for the message classes requires a larger data type
than the int used here.

RETURN VALUE

Returns true (1) if a message was returned (and the mref, mclass and insref fields will be filled) or

false (0) if there are no more messages in the current consumed data (or an error occured).

ERRORS

MDF_ERR_NO_ERROR No errors occurred when decoding the message

MDF_ERR_MSG_OOB The received message contained lengths that would overflow the message

MDF_ERR_AUTHFAIL The authentication of the message failed due to either communications errors or an
injection attempt. The connection with the server has been dropped.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_get_next_field()

SYNOPSIS

int mdf_get_next_field(handle, uint32_t *tag, char **value);

DESCRIPTION

Fetches the next field from the current message.

The field tag will be returned in tag and can be matched with the field definitions MDF_F_ to determine
which field that was fetched.

The field value will be returned as a UTF-8 string in the char pointer pointed to by value. The value can be
NULL if the field value is supposed to be null which is a valid value in the Millistream Data Feed. Please note
that the returned string points at a static string allocated within the API handle, and that it will be reused on the
next call to this function. So in order to retain the value, a local copy has to be performed.

RETURN VALUE

Returns true (1) if a field was returned, or false (0) if there are no more fields in the current message.

ERRORS

MDF_ERR_NO_ERROR No errors occurred when decoding the field

MDF_ERR_MSG_OOB The current field contained lengths that would overflow the message

MDF_ERR_UNKNOWN_TEMPLATE The current message contains a message reference for which the API does
not know the template, so the message cannot be decoded.

MDF_ERR_TEMPLATE_OOB The current field is outside the template defined for this message, either the
 API templates are out of date, or we have received some errenous data.

MDF_ERR_NO_MEM There was not sufficient available memory to fulfill a call to realloc() when
resizing the value string to accommodate for a string or very long number.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_get_mclass()

SYNOPSIS

uint64_t mdf_get_mclass(handle);

DESCRIPTION

Returns the message class of the current message.

RETURN VALUE

Returns the message class or MDF_MC_UNDEF (0) if the message class cannot be determined.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_get_delay()

SYNOPSIS

uint8_t mdf_get_delay(handle);

DESCRIPTION

Returns the intended delay of the current message. Note that unless delay-mode have been activated, this
function will always return a delay of Realtime (0). Also note that this is the intended delay and not the actual
delay, aka any network or server latencies are not included in the value.

RETURN VALUE

0 for Realtime, 1 for Delay (usually 15 minutes), 2 for EndOfDay, 3 for NextDay (usually 24h delay or after
midnight local exchange time) and 4 for T+1.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_get_property()

SYNOPSIS

int mdf_get_property(handle, MDF_OPTION option, ...);

DESCRIPTION

Return the value of the specified option. The third argument MUST be a pointer to the the storage type of the
option to fetch.

RETURN VALUE

Returns true (1) if a property was fetched, or false (0) if the specified property does not exist or if the specified
property does not support to be fetched.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_set_property()

SYNOPSIS

int mdf_set_property(handle, MDF_OPTION option, void *value);

DESCRIPTION

Modify the value of the specified option. The third argument should be a pointer that MUST be the type
specified for the particular property.

RETURN VALUE

Returns true (1) if the property was successfully modified, or false (0) if the specified property does not exist,
if the specified property cannot be modified or if the given value is out of bounds.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_connect()

SYNOPSIS

int mdf_connect(handle, char *servers);

DESCRIPTION

Connects to the first server in servers, which can be a comma separated list of 'host:port' pairs,
where 'host' can be a DNS host name or an ip address (IPv6 addressed must be enclosed in brackets). If the
server does not respond in time (MDF_OPT_CONNECT_TIMEOUT), the next server in the list will be tried
until the list is empty and the function finally fails.

Upon connect, the API will verify the authenticity of the server using it's public RSA key, and a secure channel
will be set up between the client and the server before the function signals success.

If this is the first successful connect on the API handle, or the templates has been updated since the last time
the API was connected, the server will send a MDF_M_MESSAGESREFERENCE message to the client
containing the new message templates. So you could receive one message before a successful logon request.

RETURN VALUE

Returns true (1) if a connection has been set up or false (0) if a connection attempt failed with every server on
the list.

ERRORS

MDF_ERR_ARGUMENT The servers argument was missing or contained erroneous data

MDF_ERR_CONNECTED The API handle is already connected, if you want to reconnect, you must first
disconnect the current connection.

MDF_ERR_CONNECT The connection attempt failed with every server on the list

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_disconnect()

SYNOPSIS

void mdf_disconnect(handle);

DESCRIPTION

Disconnect a connected API handle. Safe to call even if the handle is already disconnected.

RETURN VALUE

None

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_extract()

SYNOPSIS

void *mdf_extract(handle, uint16_t *mref, uint64_t *insref, size_t *len);

DESCRIPTION

Extracts the next message in the stream so that the caller can later inject it into another handle. The mref and
insref is returned just like in mdf_get_next_message2() to let the caller apply logic when deciding to which
handle to later inject this message, please note that MDF_M_MESSAGESREFERENCE messages must be
injected into every handle where you inject messages so that the handles can properly set up the message
templates. The number of bytes in the message is written to the variable pointed to by len.

RETURN VALUE

A pointer to the message in the internal read buffer of the handle. Callers must make a copy of this data and not
used it directly, i.e the data pointed to by the returned pointer will be overwritten by other functions of the api.
Returns NULL when there are no more messages to extract (or an error occured).

ERRORS

MDF_ERR_NO_ERROR No errors occurred when decoding the message

MDF_ERR_MSG_OOB The received message contained lengths that would overflow the message

MDF_ERR_AUTHFAIL The authentication of the message failed due to either communications errors or an
injection attempt. The connection with the server has been dropped.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_inject()

SYNOPSIS

int mdf_inject(handle, void *ptr, size_t len);

DESCRIPTION

Injects a (or multiple) message(s) into the handle previously extracted by mdf_extract(). Multiple messages
can be injected at once by concatenating multiple messages from mdf_extract() into a single buffer before
injecting. After injecting, the caller must call mdf_get_next_message() / mdf_get_next_message2() as usual
until it returns false to indicate that all messages have been processed before injecting a new message.

The handle used to process injected messages cannot be used for other purposes, i.e it cannot be connected to a
server and mdf_consume() should never be called on it.

The data given via ptr is copied by the API so the same data can be injected into multiple different handles at
the same time, and the caller can free or overwrite the data once mdf_inject() have returned without risking
any side effects.

RETURN VALUE

Returns true (1) if the message was injected or (0) if an error occured.

ERRORS

MDF_ERR_NO_MEM There was not sufficient available memory to fulfill a call to realloc() when
resizing the consume buffer to accommodate for the incoming message.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_create()

SYNOPSIS

mdf_message_t mdf_message_create();

DESCRIPTION

Creates a new message handle. A message handle can contain several messages for efficient sending of
multiple messages to the Millistream system.

RETURN VALUE

On success, a newly created message handle is returned. On error, NULL is returned.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_destroy()

SYNOPSIS

void mdf_message_destroy(mdf_message_t message);

DESCRIPTION

Destroys the message handle and frees all allocated memory.

RETURN VALUE

None

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_set_property()

SYNOPSIS

int mdf_message_set_property(handle, MDF_MSG_OPTION option, int value);

DESCRIPTION

Modify the value of the specified option. Modified options retain their value after a mdf_message_reset().

RETURN VALUE

Returns true (1) if the property was successfully modified, or false (0) if the specified property does not exist,
if the specified property cannot be modified or if the given value is out of bounds.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_reset()

SYNOPSIS

void mdf_message_reset(mdf_message_t message);

DESCRIPTION

Resets the message handle (sets the number of active messages to zero) so it can be reused. The memory
allocated for the current messages in the handle is retained for performance reasons and will be reused when
you add new messages to the handle. Has the exact same end effect as calling mdf_message_del() until it
returns false (0).

Settings such as the zlib compression level, intended delay and so on are retained and not reset back to their
default values.

RETURN VALUE

None

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_del()

SYNOPSIS

int mdf_message_del(mdf_message_t message);

DESCRIPTION

Removes the current active message from the message handle and all the fields that you have added for this
message. Points the current message at the previous message in the message handle if it exists, so repeated
calls will reset the whole message handle as if mdf_message_reset() had been called.

RETURN VALUE

Returns true (1) if there are more active messages in the message handle or false (0) if the message handle is
now empty.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add()

SYNOPSIS

int mdf_message_add(mdf_message_t message, uint64_t insref, int mref);

DESCRIPTION

Adds a new message to the message handle. If the current active message is empty it will be reused to carry
this new message.

RETURN VALUE

Returns true (1) if a new message was added to the message handle (or an empty message was reused) or false
(0) if there was an error.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add2()

SYNOPSIS

int mdf_message_add2(mdf_message_t message, uint64_t insref,

 uint16_t mref, uint8_t delay);

DESCRIPTION

Adds a new message to the message handle. If the current active message is empty it will be reused to carry
this new message. Can be more convenient to use if the delay varies much between messages.

RETURN VALUE

Returns true (1) if a new message was added to the message handle (or an empty message was reused) or false
(0) if there was an error.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_numeric()

SYNOPSIS

int mdf_message_add_numeric(mdf_message_t message, uint32_t tag,

 char *value);

DESCRIPTION

Adds a numeric field to the current active message.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_int()

SYNOPSIS

int mdf_message_add_int(mdf_message_t message, uint32_t tag,

int64_t value, int decimals);

DESCRIPTION

Adds a scaled signed integer field to the current active message. decimals can be between 0 and 19.
A value of 12345 with decimals set to 2 will be encoded as “123.45”.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_uint()

SYNOPSIS

int mdf_message_add_uint(mdf_message_t message, uint32_t tag,

 uint64_t value, int decimals);

DESCRIPTION

Adds a scaled unsigned integer field to the current active message. decimals can be between 0 and 19.
A value of 12345 with decimals set to 2 will be encoded as “123.45”.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_string()

SYNOPSIS

int mdf_message_add_string(mdf_message_t message, uint32_t tag,

 char *value);

DESCRIPTION

Adds a UTF-8 string field to the current active message. The string is compressed with zlib using the
compression level as set by mdf_message_set_property() which is Z_BEST_SPEED by default.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value was not a valid
UTF-8 string).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_string2()

SYNOPSIS

int mdf_message_add_string2(mdf_message_t message, uint32_t tag,

 char *value, size_t len);

DESCRIPTION

Adds a UTF-8 string field to the current active message. The string is compressed with zlib using the
compression level as set by mdf_message_set_property() which is Z_BEST_SPEED by default. Only the first
len number of bytes of the string will be added, note that the string have to be minimum len bytes in length or
this function will fail.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied string was not at
least len number of bytes long).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_date()

SYNOPSIS

int mdf_message_add_date(mdf_message_t message, uint32_t tag,

 char *value);

DESCRIPTION

Adds a date field to the current active message. Please note that all dates and times in the Millistream system is
expressed in UTC. The format of value must be one of “YYYY-MM-DD”, “YYYY-MM”, “YYYY-H1”,
“YYYY-H2”, “YYYY-T1”, “YYYY-T2”, “YYYY-T3”, “YYYY-Q1”, “YYYY-Q2”, “YYYY-Q3”, “YYYY-
Q4” or “YYYY-W[1-52]”.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_date2()

SYNOPSIS

int mdf_message_add_date2(mdf_message_t message, uint32_t tag,

 int year, int mon, int day);

DESCRIPTION

Adds a date field to the current active message. Please note that all dates and times in the Millistream system is
expressed in UTC.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_time()

SYNOPSIS

int mdf_message_add_time(mdf_message_t message, uint32_t tag,

 char *value);

DESCRIPTION

Adds a time field to the current active message. Please note that all times and dates in the Millistream system
are expressed in UTC. The format of value must be “HH:MM:SS”, “HH:MM:SS.mmm” (where mmm is the
milliseconds), or "HH:MM_SS.nnnnnnnnn" (where nnnnnnnnn is the nano seconds).

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_time2()

SYNOPSIS

int mdf_message_add_time2(mdf_message_t message, uint32_t tag,

 int hour, int min, int sec, int msec);

DESCRIPTION

Adds a time field to the current active message. Please note that all times and dates in the Millistream system
are expressed in UTC. If msec is set to 0 the timestamp is encoded as “HH:MM:SS”.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_time3()

SYNOPSIS

int mdf_message_add_time2(mdf_message_t message, uint32_t tag,

 int hour, int min, int sec, int nsec);

DESCRIPTION

Adds a time field to the current active message. Please note that all times and dates in the Millistream system
are expressed in UTC. If nsec is 1 – 999 the timstamp is encoded as “HH:MM:SS.mmm”. If nsec is set to 0 the
timestamp is encoded as “HH:MM:SS”.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_add_list()

SYNOPSIS

int mdf_message_add_list(mdf_message_t message, uint32_t tag,

 char *value);

DESCRIPTION

Adds a list field to the current active message. A list field is a space separated list of instrument references. The
first position in the value can be:

'+' - the supplied list should be added to the current value

'-' - the supplied list should be removed from the current value

'=' - the supplied list is the current value

If there is no such prefix it is interpreted as if it was prefixed with a '='. There is a current soft limit of
1.000.000 instrument references per list.

RETURN VALUE

Returns true (1) if the field was successfully added, or false (0) if the value could not be added (because there
was no more memory, the message handle does not contain any messages, or the supplied value is not of the
type specified).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_send()

SYNOPSIS

int mdf_message_send(mdf_t handle, mdf_message_t message);

DESCRIPTION

Sends all the active messages in the message handle to the server. The message handle will not be reset, so this
has to be performed manually.

RETURN VALUE

Returns true (1) if there was no errors detected when sending the data, or false (0) if an error was detected
(such as not connected to any server). Due to the nature of TCP/IP, a successful return code does not guarantee
that the server has received the messages.

ERRORS

MDF_ERR_DISCONNECTED The error was such that the connection with the server was disconnected

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_get_num()

SYNOPSIS

int mdf_message_get_num(mdf_message_t message);

DESCRIPTION

Returns the total number of messages in the message handle (the number of active + the number of reused
messages currently not used for active messages).

RETURN VALUE

The total number of messages in the message handle.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_get_num_active()

SYNOPSIS

int mdf_message_get_num_active(mdf_message_t message);

DESCRIPTION

Returns the number of active messages in the message handle, aka the number of messages that would be sent
to the server if mdf_message_send() was called.

RETURN VALUE

The number of active messages in the message handle.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_get_num_fields()

SYNOPSIS

int mdf_message_get_num_fields(mdf_message_t message);

DESCRIPTION

Returns the number of fields in the current active message.

RETURN VALUE

The number of fields in the current active message.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_move()

SYNOPSIS

int mdf_message_move(mdf_message_t src, mdf_message_t dst,

 uint64_t insref_src, uint64_t insref_dst);

DESCRIPTION

Moves all messages from src with an insref matching insref_src to dst and changes the insref to insref_dst. If
dst is set to the same message handle as src or if dst is NULL, then the change from insref_src to insref_dst
will be done in-place in src.

If both insref_src and insref_dst is set to UINT64_MAX then the insrefs in src will not be changed and all the
messages regardless of insref will be moved to dst.

RETURN VALUE

Returns true (1) if the operation was successful, or false (0) if it failed.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_serialize()

SYNOPSIS

int mdf_message_serialize(mdf_message_t message, char **result);

DESCRIPTION

Serializes the message chain in the message handle and produces a base64 encoded string to the address
pointed to by result. It’s the responsibility of the caller to free the produced string.

RETURN VALUE

Returns true (1) if there existed a message chain and if it was successfully base64 encoded, or false (0) if there
existed no message chain or if the base64 encoding failed.

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

mdf_message_deserialize()

SYNOPSIS

int mdf_message_deserialize(mdf_message_t message, char *data);

DESCRIPTION

Deserializes a base64 encoded message chain and replaces the existing (if any) message chain in the message
handler.

RETURN VALUE

Returns true (1) if the message chain was successfully deserialized, or false (0) if the deserialization failed (if
so the current message chain in the message handler is left untouched).

ERRORS

None

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

Changelog
2024-06-24 Clarified that mdf_message_send() can be called from multiple threads as of v1.0.29 as long

as each thread uses individual message handles. Added build info for macOS.

2024-05-15 New function in v1.0.29: mdf_message_add2() to set the delay directly when adding a new
message to the chain.

2024-05-03 Defined the values for the various delays.

2022-12-28 New options in v1.0.27: MDF_OPT_RBUF_SIZE and MDF_OPT_RBUF_MAXSIZE.

2022-12-21 New function in v1.0.27: mdf_extract() to extract the next message from a handle.
New function in v1.0.27: mdf_inject() to inject a previously extracted message to a handle

2022-04-18 As of v1.0.26 mdf_create() no longer disables SIGPIPE if the system supports
MSG_NOSIGNAL or SO_NOSIGPIPE.

2022-04-08 New function in v1.0.26: mdf_message_set_property() that replaces
mdf_message_set_compression_level(), mdf_message_set_utf8_validation() and
mdf_message_set_delay() with a generic function.

2022-03-31 New option in v1.0.26: MDF_OPT_HANDLE_DELAY.
New function in v1.0.26: mdf_message_set_delay() to set the intended delay for the current
and future messages.
New function in v1.0.26: mdf_get_delay() to get the intended delay of a received message.

2022-03-30 New function in v1.0.26: mdf_get_next_message2() that works like the old
mdf_get_next_message() only that the mref pointer is now the proper type (uint16_t) and the
mclass argument is removed (can be fetched via a function instead for users that are
interested in it). The old mdf_get_next_message() is as of now a wrapper around this new
function so there are no real use case for using the old one except for supporting legacy
software.
New function in v1.0.26: mdf_get_mclass() that returns the mclass of a received message.

2022-03-23 New function in v1.0.26: mdf_message_get_num_fields() to fetch the number of fields in the
current active message.

 2022-01-28 New option in v1.0.26: MDF_OPT_TIMEOUT.
As of v1.0.26 mdf_message_move() will not change the insref if both insref_src and
insref_dst is set to UINT64_MAX;

2021-03-13 New options in v1.0.25: MDF_OPT_CRYPT_DIGEST and MDF_OPT_CRYPT_CIPHER.

2021-03-12 New options in v1.0.25: MDF_OPT_CRYPT_DIGESTS and MDF_OPT_CRYPT_CIPHERS.

2021-01-09 New option in v1.0.24: MDF_OPT_TIME_DIFFERENCE_NS.

2020-06-20 Clarified that MDF_OPT_TIME_DIFFERENCE is updated by the Heartbeat Request and
Heartbeat Response from the server.

2019-06-20 As of 2019-06-22 it's possible to send a "*" character to MDF_F_REQUESTCLASS or
MDF_F_INSREFLIST when issuing a request or unsubscription to form "wildcard" requests,
aka for all Request Classes and/or Instruments that the account is entitled for.

2019-02-15 New function in v1.0.23: mdf_message_add_string2() to add strings with a specified length.

2018-12-13 New function in v1.0.22: mdf_message_set_compression_level() to set the zlib compression
level used for the mdf_message_add_string() function.
As of v1.0.22 the mdf_consume() function can take a negative value in timeout to use a
timeout period of microseconds instead of seconds.

2018-07-30 New option in v1.0.22: MDF_OPT_BIND_ADDRESS.

2017-02-23 New functions in v1.0.20: mdf_message_serialize() and mdf_message_deserialize() to

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

serialize and deserialize a message to/from a base64 encoded string.

2017-02-21 New function in v1.0.20: mdf_message_move() to move messages from one message handle
to another and/or change insrefs in the process.

2016-04-28 New function in v1.0.19: mdf_message_add_time3() for adding nanosecond timestamps to a
mdf message without having to convert it to a string first.

2015-11-26 New function in v1.0.19: mdf_message_add_date2() for adding dates to a mdf message
without having to convert it to a string first.

2014-12-18 New function in v1.0.17: mdf_message_add_int() for adding scaled signed integers to a mdf
message without having to convert it to a string first.

2014-06-27 New function in v1.0.16: mdf_message_add_time2() for adding milliseconds timestamps to a
mdf message without having to convert it to a string first.

2012-04-27 New function in v1.0.13: mdf_message_add_uint() for adding scaled unsigned integers to a
mdf message without having to convert it to a string first.

2011-12-12 The Request message now allows multiple request classes in a single request for
“condensed requests”, and it is now also possible to unsubscribe to the requested realtime
messages/instruments.

2011-02-01 The Windows binaries are now distributed as a single zip archive for both supported
architectures (x86 and x64) and import library files for MinGW are also included.

2010-10-14 As of v1.0.9 mdf_consume() will read data in chunks so the old semantics where the client
had to implement a level triggered event handler does no longer apply.
Added info about the mdf_consume() function.
Added some new error codes to mdf_message_send() and mdf_get_next_message().
Specified the format of the date and time formats accepted by the mdf_message_add_date()
and mdf_message_add_time() functions.

2010-03-25 Image replies from the server have changed semantics. The new model is to no longer send
empty messages if all fields are null (if the field has been deliberately set to null due to an
update, the field will be added as null to the message however and a message will be sent).

2010-03-15 Requests can now be performed from a specified time and date.

2009-12-30 Win64 binaries are now available.

2009-04-09 Corrected how properties are modified.

2009-04-02 Added MDF_OPT_TCP_NODELAY property.

2009-03-24 Added a note that Windows Platform SDK is needed if using Visual Studio 6 to compile mdf.

2009-03-23 Corrected the references to the Messages and Fields reference documents.

2009-03-18 Initial version.

Millistream Market Data AB www.millistream.com
Box 5243, 402 24 Göteborg, Sweden Org nr: 556763-4117

	The MDF C/C++ API

